梦想破碎是没有声音的,它只是缓慢又沉默地离开了。 by 苏更生

寻找最小(最大)的k个数

数据结构-算法 熊 大 8933℃ 3评论

题目描述:输入n个整数,输出其中最小的k个元素。

例如:输入1,2,3,4,5,6,7,8这8个数字,则最小的4个数字为1,2,3,4。

思路1:最容易想到的方法:先对这个序列从小到大排序,然后输出前面的最小的k个数即可。如果选择快速排序法来进行排序,则时间复杂度:O(n*logn)

思路2:在思路1的基础上更进一步想想,题目并没有要求要查找的k个数,甚至后n-k个数是有序的,既然如此,咱们又何必对所有的n个数都进行排序列?如此,我们能想打的一个方法是:遍历n个数,先把最先遍历到得k个数存入大小为k的数组之中,对这k个数,利用选择或交换排序,找到k个数中的最大数kmax(kmax设为k个元素的数组中最大元素),用时O(k)(你应该知道,插入或选择排序查找操作需要O(k)的时间),后再继续遍历后n-k个数,x与kmax比较:如果x<kmax,则x代替kmax,并再次重新找出k个元素的数组中最大元素kmax‘;如果x>kmax,则不更新数组。这样,每次更新或不更新数组的所用的时间为O(k)或O(0),整趟下来,总的时间复杂度平均下来为:n*O(k)=O(n*k)

思路3:与思路2方法类似,只是用容量为k的最大堆取代思路2中数组的作用(从数组中找最大数需要O(k)次查找,而从更新一个堆使之成为最大堆只需要O(logk)次操作)。具体做法如下:用容量为k的最大堆存储最先遍历到的k个数,并假设它们即是最小的k个数,建堆费时O(k)后,有k1<k2<…<kmax(kmax设为大顶堆中最大元素)。继续遍历数列,每次遍历一个元素x,与堆顶元素比较,x<kmax,更新堆(用时logk),否则不更新堆。这样下来,总费时O(k+(n-k)*logk)=O(n*logk)。

思路4:按编程之美中给出的描述,类似快速排序的划分方法,N个数存储在数组S中,再从数组中随机选取一个数X(随机选取枢纽元,可做到线性期望时间O(N)的复杂度),把数组划分为Sa和Sb俩部分,Sa<=X<=Sb,如果要查找的k个元素小于Sa的元素个数,则返回Sa中较小的k个元素,否则返回Sa中所有元素+Sb中小的k-|Sa|个元素。像上述过程一样,这个运用类似快速排序的partition的快速选择SELECT算法寻找最小的k个元素,在最坏情况下亦能做到O(N)的复杂度。oh,太酷了,有没有!

思路5:仍然用到数据结构:堆。具体做法为:针对整个数组序列建最小堆,建堆所用时间为O(n),然后取堆中的前k个数,总的时间复杂度即为:O(n+k*logn)。

思路6:与上述思路5类似,不同的是在对元素数组原地建最小堆O(n)后,然后提取K次,但是每次提取时,换到顶部的元素只需要下移顶多k次就足够了,下移次数逐次减少(而上述思路5每次提取都需要logn,所以提取k次,思路7需要k*logn。而本思路只需要K^2)。此种方法的复杂度为O(n+k^2)。此方法可能不太直观,一个更直观的理解是:每次取出堆顶元素后,最小堆的性质被破坏了,我们需要调整最小堆使之满足最小堆的性质。由于我们只需要求取前k个数,我们无需将整个堆都完整的调整好,只需保证堆的最上面k个数是最小的就可以,即第一趟调整保持第0层到第k层是最小堆,第二趟调整保持第0层到第k-1层是最小堆…,依次类推。

在编码实现上述思路之前,你可能需要了解:快速排序堆排序

 思路3的一个实现:

 思路4的实现

首先给出《编程之美》上给出的伪代码:

一个简化实现的如下:

出处:快课  作者:熊大

参考:

http://blog.csdn.net/v_JULY_v/article/details/6370650

喜欢 (7)or分享 (0)
发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
(3)个小伙伴在吐槽
  1. 再提供一个思路8:二分枚举答案,复杂度为O(N * 32)
    ufo008ahw2014-08-15 11:05 回复
  2. return k_big(arr,low+1,high_tmp,k); 是不是有点问题啊? k-(low+1)
    Black2014-08-19 13:10 回复